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A sandwich complex of lithium oxide: {Li[BunC(NBut)2]}4?Li2O
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Hydrolysis of {Li[BunC(NBut)2]}2, prepared from LiBun and
ButNCNBut in hexanes, produced the nineteen atom cluster
{Li[BunC(NBut)2]}4?Li2O; an X-ray structure determination
revealed an Li2O molecule encapsulated by two
eight-membered Li2N4C2 rings.

Novel structural and/or reaction chemistry often results from
ligands that provide unusual steric and/or electronic environ-
ments at metal centres. To this end N-silylated benzamidinates
RC(NSiMe3)2

2 (R = aryl) 1,2 and, more recently, dialkylamidin-
ates RC(NR9)2

2 (where R and R9 are different alkyl groups)
have been investigated extensively.1b,3–5 Although a wide range
of both main-group and transition-metal complexes of these
chelating ligands has been characterized,6 structural inform-
ation for the lithium derivatives of these important reagents is
limited to complexes in which the lithium ions are co-ordinated
to Lewis bases such as RCN (R = aryl),7 THF,8 HMPA,9

N,N,N9,N9-tetramethylethylenediamine 9 or N,N,N9,N9,N0-
pentamethyldiethylenetriamine.9 The complexes [4-MeC6-
H4C(NSiMe3)2Li(THF)]2

8 and [PhC(NPh)2Li(HMPA)]2
9 form

dimeric, step-shaped structures whereas chelating Lewis bases
give rise to monomeric structures.9

We describe here the unexpected generation and crystal
structure of the complex {Li[BunC(NBut)2]}4?Li2O 2 in which a
molecule of lithium oxide is trapped between two twisted
Li2N4C2 ladders of a dimeric lithium amidinate. Compared to
other complexes of Li2O,10–14 complex 2 exhibits some novel
features that result from the unique ligand behaviour of the
Li2N4C2 ring.

Amidinates Li[RC(NR9)2] are readily obtained by the
nucleophilic addition of an organolithium reagent (RLi) to a
carbodiimide R9NCNR9.3,5 In this work, the addition of a 2.5 
solution of LiBun in hexanes (3.7 mL) to a solution of 1,3-di-
tert-butylcarbodiimide (9.22 mmol) in hexane (10 mL) under
argon at 23 8C produced a transparent, pale yellow solution.
Removal of volatile materials in vacuo gave a viscous yellow oil,
which was redissolved twice in diethyl ether (≈5 mL). Evapor-
ation of the solvent in vacuo produced {Li[BunC(NBut)2]}n 1 as
a fine yellow powder (8.63 mmol, 94%).‡ Recrystallization of 1
from a saturated toluene solution (4 d at 220 8C) produced a
few X-ray quality crystals with NMR parameters significantly
different from those of 1.

An X-ray structural determination revealed that the com-
position of these crystals is {Li[BunC(NBut)2]}4?Li2O 2 (Fig. 1).§
This nineteen atom cluster has a µ6-OLi6 core. Six-fold co-
ordination of O22 by metal cations in molecular compounds is
rare and usually involves regular Oh symmetry.12–14 A major
difference between the structure of 2 and those of other Li2O
aggregates 11–14 is that the molecule of Li2O is readily identified
in 2 because of the relatively low symmetry of this cluster.
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Thus 2 may be viewed as an almost linear Li2O molecule
[Li(1)]O]Li(2) 175.8(2)8] sandwiched between two twisted
Li2N4C2 ladders. The oxygen atom is tightly co-ordinated to
all six lithium atoms, but the mean Li]O distance in the Li2O
molecule [1.803(4) Å] is significantly shorter than that in
the other Li]O bonds [mean value 1.869(4) Å], cf. 1.89(1) Å in
[(cyclo-C5H9)N(H)Li]12?Li2O,13 1.81–1.90(2) Å in [Pri

2(Mes)-
SiP]8Li16?Li2O

14 (Mes = C6H2Me3-2,4,6). The distortion of the
octahedral geometry of the OLi6 unit in 2 is reflected in the
Li ? ? ? Li separations which range from 2.169(5) Å across the
Li2N4C2 rings to 3.127(5) Å {cf. 2.63–2.67(2) Å in [Pri

2(Mes)-
SiP]8Li16?Li2O

14}. All six lithium atoms can be viewed as four-
co-ordinate, but there is considerable variation in the Li]N
bond distances. Those belonging to the Li2O moiety are bonded
symmetrically to two nitrogen atoms of different Li2N4C2

rings [ |d(Li]N)| 2.106(4) Å] and are also involved in a third,
weaker Li ? ? ? N interaction [2.573(4) Å]. This results in a
‘pinching in’ of the Li2N4C2 rings as reflected from the values
of |Li]O]Li| 70.9(2)8 and |N]C]N| = 115.3(9)8. The other
four lithium atoms are bonded unsymmetrically to two
nitrogen atoms of the same Li2N4C2 ring [ |d(Li]N)| 2.03(2) and
2.36(2) Å]. As a result there are three four-co-ordinate and
one five-co-ordinate nitrogen atom in each Li2N4C2 ring. The
mean C]N bond distances are slightly longer for the four-co-
ordinate compared to the five-co-ordinate N atoms [1.346(2) vs.
1.329(2) Å].

‡ 1 Mp 51–54 8C. 1H NMR (25 8C, 200 MHz, C6D6): δ 0.90 (t, 3 H,
CH3CH2CH2CH2), 1.32 [s 1 m, 20 H, CH3CH2CH2CH2 and C(CH3)3],
1.85 (m, 2 H, CH3CH2CH2CH2), 2.50 (m, 2 H, CH3CH2CH2CH2). 

13C
NMR (25 8C, 50.288 MHz, C6D6): δ 14.1 (s, CH2CH2CH2CH3), 24.1
(s, CH2CH2CH2CH3), 33.0 (s, CH2CH2CH2CH3), 33.2 (s, CH2CH2-
CH2CH3), 33.7 [s, C(CH3)3], 51.6 [s, C(CH3)3], 178.4 [s, C(NBut)2Bun];
(25 8C, 75.432 MHz, solid state): δ 14.2 (s, CH2CH2CH2CH3), 24.1
(s, CH2CH2CH2CH3), 34.1 [s br, CH2CH2CH2CH3, CH2CH2CH2CH3

and C(CH3)3], 51.3 [s, C(CH3)3], 175.3 [s, C(NBut)2Bun]. 7Li NMR
(25 8C, 155.508 MHz, C6D6, relative to 1  LiCl in D2O): δ 20.62 (s);
(25 8C, 116.54 MHz, solid state, relative to LiCl): δ 1.46 (s).

2 Mp 132–134 8C (Found: C, 69.40; H, 12.78; N, 12.51. Calc. for
C52H108Li6N8O: C, 69.16; H, 12.05; N, 12.41%). 1H NMR (25 8C, 200
MHz, C6D6): δ 0.99 (t, 3 H, CH3CH2CH2CH2), 1.46 [s 1 m, 20 H,
CH3CH2CH2CH2 and C(CH3)3], 1.95 (m, 2 H, CH3CH2CH2CH2), 2.60
(m, 2 H, CH3CH2CH2CH2). 

13C NMR (25 8C, 50.288 MHz, C6D6):
15.5 (s, CH2CH2CH2CH3), 23.5 (s, CH2CH2CH2CH3), 32.9 (CH2CH2-
CH2CH3), 34.5 (s, CH2CH2CH2CH3), 34.6 [s, C(CH3)3], 51.9 [s,
C(CH3)3], 179.6 [s, C(NBut)2Bun]; (25 8C, 75.432 MHz, solid state):
δ 14.4 (s, CH2CH2CH2CH3), 24.5 (s, CH2CH2CH2CH3), 35.5 [s br,
CH2CH2CH2CH3, CH2CH2CH2CH3 and C(CH3)3], 52.7 [s, C(CH3)3],
180.6 [s, C(NBut)2Bun]. 7Li NMR (25 8C, 155.508 MHz, C6D6, relative
to 1  LiCl in D2O): δ 20.82 (s), 21.23 (s); (25 8C, 116.54 MHz, solid
state, relative to LiCl): δ 2.97 (s).
§ Crystal data: C52H108Li6N8O, M = 903.10, triclinic, space group P1̄,
a = 10.137(3), b = 14.205(4), c = 21.961(6) Å, α = 91.7718(5), β =
103.207(5), γ = 101.442(5)8, U = 2008(1) Å3, Z = 2, µ = 0.58 cm21,
T = 213 K, 24 534 reflections collected, 13 710 independent reflections,
Rint = 0.0701. The final R(F) and wR(F 2) values were 0.0545 and
0.0821, respectively. CCDC reference number 186/1071. See http://
www.rsc.org/suppdata/dt/1998/2603/ for crystallographic files in .cif
format.
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The most obvious explanation for the formation of 2 is the
partial hydrolysis of 1 by trace amounts of water present in the
solvent or flask used for recrystallization [reactions (1) and (2)].

Li[BunC(NBut)2] 1 H2O →
LiOH 1 BunC(NBut)[N(H)But] (1)1

3

5 1 1 LiOH → {Li[C(NBut)2(Bun)]}4?Li2O 1 3 (2)

2

The adventitious presence of water has previously been identi-
fied as the source of Li2O in aggregates with lithium amides.12,13

To test this hypothesis a stoichiometric amount of water was
added, by syringe, to a 0.46  solution of 1 in toluene (5 mL) at
23 8C. This produced an oily white solid, which was stirred for 1
h to give an opaque yellow solution. The volume of the solution
was reduced by one-half and colourless crystals of 2 were
obtained in 30% yield after 3 d at 214 8C. The analytical and
spectroscopic characterization of 2 were completed on this
product.‡ The observation of two resonances in the 7Li NMR
spectrum (in C6D6) at δ 20.82 and 21.23 (the latter is of lower
relative intensity) suggests a higher average symmetry (D2) for 2
in solution compared to that observed (C2) in the solid state.
The 7Li NMR spectrum of 1 in C6D6 exhibits a singlet at δ
20.62. There are significant differences in the 13C NMR chem-
ical shifts observed for 1 and 2.‡ In particular, δ [C(NBut)2-
(Bun)] provides a diagnostic distinction between 1 and 2 both
in solution and, especially, in the solid state. The 1H NMR
spectrum of the mother-liquor from reaction (1) showed it to
consist of a mixture of unreacted 1 and the hydrolysis product
3. Thus hydrolysis of 1 is clearly established as a route to 2.
Further support for this conclusion is provided by the observ-
ation that the direct reaction of 1 with LiOH in toluene at 23 8C
for 48 h produces 2 in 41% yield, but 2 is not formed from the
treatment of 1 with Li2O under similar conditions.

A conceptual representation of the assembly of the nineteen
atom cluster 2 from two Li2N4C2 dimers and a Li2O molecule is

Fig. 1 Molecular structure and atomic numbering scheme for complex
2. Thermal ellipsoids are depicted at 30% probability. For clarity only
the α-carbon atoms of Bun and But are shown. Selected bond distances
(Å) and angles (8): O]Li(1) 1.805(4), O]Li(2) 1.801(4), O]Li(3),
1.880(4), O]Li(4) 1.883(4), O]Li(5) 1.852(4), O]Li(6) 1.862(4),
Li(1)]N(1) 2.082(4), Li(1)]N(2) 2.664(4), Li(1)]N(8) 2.092(4),
Li(2)]N(4) 2.102(4), Li(2)]N(5) 2.148(4), Li(2)]N(6) 2.481(4),
Li(3)]N(1) 2.047(4), Li(3)]N(2) 2.505(4), Li(3)]N(3) 2.293(4),
Li(4)]N(2) 2.316(4), Li(4)]N(3) 2.458(4), Li(4)]N(4) 2.050(4),
Li(5)]N(6) 2.390(4), Li(5)]N(7) 2.443(4), Li(5)]N(8) 2.062(4),
Li(6)]N(5) 2.048(4), Li(6)]N(6) 2.514(5), Li(6)]N(7) 2.376(4); |N]C]N|
115.1 [range 114.6(2)–115.9(2)]

shown in Scheme 1, where the source of Li2O is LiOH produced
by the hydrolysis of 1. An alternative source of LiOH and,
hence, Li2O in the original formation of 2 is the commercial
LiBun used for the preparation of 1.15 Indeed the 7Li NMR
spectrum of fresh LiBun (2.5  in hexanes, Aldrich) in C6D6

exhibited a small resonance at δ 20.89 in addition to the
dominant resonance at δ 20.22 (vs. 1  LiCl in D2O). The inten-
sity of the former relative to that at δ 20.22 increased upon
addition of water to the solution, but not upon addition of
solid LiOH. Although the identity of the δ 20.89 species has
not been established, we cannot rule out commercial LiBun as a
source of Li2O in the formation of 2.

Finally, we note that the co-ordination of Li2O does not
affect the use of 2 as a source of the chelating amidinate
ligand BunC(NBut)2

2. For example, reaction of 2 (5.82 mmol)
with PhBCl2 (5.29 mmol) in toluene (15 mL) produces
PhB(Cl)[C(NBut)2Bun] 4 in 82% Yield.¶ The four-membered
ring structure of 4 has been confirmed by X-ray crystallography
and full details of this structure and those of related four-
co-ordinate boron complexes will be reported in a separate
publication.16

In summary, complex 2 provides the first demonstration of
the ligand behaviour of a dimeric lithium amidinate. The
entrapment of other alkali-metal chalcogenides, e.g. Li2S,
Na2O, by lithium amidinates is an interesting possibility that
will be pursued.
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